$$M\textbf{e}_1=M\begin{pmatrix}1 \\\ 0\end{pmatrix} \:=\:\begin{pmatrix}a & c \\\ b & d\end{pmatrix}\begin{pmatrix}1 \\\ 0\end{pmatrix} \: = \:\begin{pmatrix}a \\\b \end{pmatrix}$$ and: $$M\textbf{e}_2=M\begin{pmatrix}0 \\\ 1\end{pmatrix} \:=\:\begin{pmatrix}a & c \\\ b & d\end{pmatrix}\begin{pmatrix}0 \\\ 1\end{pmatrix} \: = \:\begin{pmatrix}c\\\d \end{pmatrix}$$ Thus: $$M( \lambda\textbf{e}_1+\mu\textbf{e}_2)=\lambda\begin{pmatrix}a \\\b \end{pmatrix}+\mu\begin{pmatrix}c\\\d \end{pmatrix}$$ Do you see now how it goes from here?