This problem has more than one solution.
Let us denote:
* $p_1=P(A\cap B)$
* $p_2=P(A\cap B^{\complement})$
* $p_3=P(A^{\complement}\cap B)$
* $p_4=P(A^{\complement}\cap B^{\complement})$
The events mentioned above are disjoint and covering.
We have the following equalities:
* $p_1+p_2+p_3+p_4=1$
* $0.9(p_1+p_3)=p_1$ based on $P(A\mid B)P(B)=P(A\cap B)$
* $0.99(p_2+p_4)=p_4$ based on $P(A^{\complement}\mid B^{\complement})P(B^{\complement})=P(A^{\complement}\cap B^{\complement})$
If $p$ and $q$ are nonnegative and satisfy $10p+100q=1$ then a solution is:
* $9p=P(A\cap B)$
* $q=P(A\cap B^{\complement})$
* $p=P(A^{\complement}\cap B)$
* $99q=P(A^{\complement}\cap B^{\complement})$
leading to: $$P(B^{\complement}\mid A)=\frac{q}{q+9p}$$