Assuming all symbols are real except for the complex unit. Then the second term is fine; consider the first: \begin{eqnarray} \frac{\epsilon_{s}-\epsilon_{\infty}}{1+i\frac{\omega \epsilon}{\sigma}} &=& \frac{\epsilon_{s}-\epsilon_{\infty}}{1+i\frac{\omega \epsilon}{\sigma}}\frac{i}{i}\\\ &=& \frac{i(\epsilon_{s}-\epsilon_{\infty})}{i-\frac{\omega \epsilon}{\sigma}} \end{eqnarray} Now multiply both numerator and denominator by the conjugate of the denominator: \begin{eqnarray} \frac{(-i-\frac{\omega \epsilon}{\sigma})}{(-i-\frac{\omega \epsilon}{\sigma})}\frac{i(\epsilon_{s}-\epsilon_{\infty})}{i-\frac{\omega \epsilon}{\sigma}} &=& \frac{i(\epsilon_{s}-\epsilon_{\infty})(-i-\frac{\omega \epsilon}{\sigma})}{1+\frac{\omega^{2}}{\epsilon^{2}\sigma^{2}}}\\\ \end{eqnarray} Now multiply out the brackets on the numerator and include the second term I omitted above and then collect real and imaginary parts.
Good luck!