For part 1, use Bayes's Rule. (Here, I use $-+$ to mean the first test is negative and the first one positive.)
$$\eqalign{P(Preg \mid -+)&= {P(Preg \cap -+)\over P(-+)\mathstrut} \cr&= {P(Preg \cap -+)\over P(Preg \cap -+)+ P(\overline{Preg} \cap -+)} \cr&= {P(Preg) P( -+\mid Preg)\over\mathstrut P(Preg) P(-+\mid Preg)+ P(\overline{Preg}) P(-+ \mid \overline{Preg})} \cr&= {\mathstrut(0.6)(0.015)(0.985) \over (0.6)(0.015)(0.985)+(0.4)(0.992)(0.008)} \approx 0.74\cr} $$