By the Chinese Remainder Theorem, there exists an element $c$ such that $$c \equiv a \pmod{p} \\\ c \equiv b \pmod{q}$$
Then $$x \equiv c^2 \pmod{p}\\\ x\equiv c^2 \pmod{q}$$
By the Chinese Remainder Theorem, there exists an element $c$ such that $$c \equiv a \pmod{p} \\\ c \equiv b \pmod{q}$$
Then $$x \equiv c^2 \pmod{p}\\\ x\equiv c^2 \pmod{q}$$