Constructing Lorenz-like curves
In economics, the Lorenz curve measures economic inequality in countries. The probability density function given by wikipedia is:
 \times(0,1), $ with a variable and a smoothly varying parameter that is symmetric about the line $y=x$ and $ y=1-x $, such that the function smoothly transitions from itself to its inverse as the parameter is varied and as it crosses the line $y=x$. The family $ f_n(x)= x^n $ almost works but it is not symmetric about the line $y=1-x$. Also I'm not sure if the Lorenz curve admits an inverse but if it did that would help me a lot and would probably go a long way in answering my question.
Thanks.
This system of symmetric superellipse equations works well: