I got $$\int_{-\pi}^\pi(e^{t^2}\sin t-2te^{t^2}\cos t+2t\sqrt{1+t^2})\,dt.$$ I then thought about the derivative of $e^{t^2}\cos t$.
I got $$\int_{-\pi}^\pi(e^{t^2}\sin t-2te^{t^2}\cos t+2t\sqrt{1+t^2})\,dt.$$ I then thought about the derivative of $e^{t^2}\cos t$.