I would calculate everything mod. $17$: $\;1234\equiv 10\mod 17$, so the equation becomes $$2x+10\equiv 7\mod17\iff 2x\equiv-3\equiv14\mod 17. $$ Now as $2$ is a unit mod. $17$, we may apply the _cancellation law_ : $$2x\equiv 14=2\cdot 7\mod17\iff x\equiv 7\mod 17.$$