$A\in\mathbb{R}^{n\times n}$, symmetric and $e:=[1, 1, \ldots, 1]^{\top}$. Now,
\begin{equation} e^{\top}Ae=\sum_{i,j}A_{i,j}=:c \end{equation}
and,
\begin{align} Aee^{\top}A=\alpha\alpha^{\top} \end{align}
where $\alpha:=Ae$ denotes the vector of row (or column) sums of $A$.
So,
\begin{equation} \|A-\frac{1}{e^{\top}Ae}Aee^{\top}A\|_{F}=\|A-c\alpha\alpha^{\top}\|_{F} \end{equation}
One way to proceed can be to apply triangle inequality. For that, note that for a rank-1 symmetric matrix $xx^{\top}$, $\|xx^{\top}\|_{F}=\|x\|_{2}^{2}$. This is because for any matrix, the Frobenius norm is the $2$-norm of the vector of singular values, and $xx^{\top}$ has just one non-zero eigenvalue, namely, $\|x\|_{2}^{2}$. This gives
\begin{equation} \|A-\frac{1}{e^{\top}Ae}Aee^{\top}A\|_{F}\le \|A\|_{F}+\frac{1}{c}\|\alpha\|_{2}^{2}. \end{equation}
Is this the kind of characterization you are looking for?