HINT:
If $\tan^{-1}u=A;\tan A=u,\cos A=+\dfrac1{\sqrt{1+u^2}}$
$\csc^2\dfrac A2=\dfrac2{1-\cos A}$
If $\tan^{-1}v=B;\tan B=v,\cos B=+\dfrac1{\sqrt{1+v^2}}$
$\sec^2\dfrac B2=\dfrac2{1+\cos B}$
Formula used: $\cos2y=1-2\sin^2y=2\cos^2y-1$
HINT:
If $\tan^{-1}u=A;\tan A=u,\cos A=+\dfrac1{\sqrt{1+u^2}}$
$\csc^2\dfrac A2=\dfrac2{1-\cos A}$
If $\tan^{-1}v=B;\tan B=v,\cos B=+\dfrac1{\sqrt{1+v^2}}$
$\sec^2\dfrac B2=\dfrac2{1+\cos B}$
Formula used: $\cos2y=1-2\sin^2y=2\cos^2y-1$