=\frac xy\tag{1} $$ and $$ \tan(\theta/2)=-\frac{\mathrm{d}y}{\mathrm{d}x}\tag{2} $$ Using the formula for $\tan(2\theta)$, we get $$ \frac xy=\frac{-2\frac{\mathrm{d}y}{\mathrm{d}x}}{1-\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}\tag{3} $$ Equation $(2)$ is satisfied by $y=ax^2-b$, where $$ \begin{align} \frac{x}{ax^2-b} &=\frac{-4ax}{1-4a^2x^2}\\\ &=\frac{x}{ax^2-\frac1{4a}}\tag{4} \end{align} $$ Therefore, $b=\frac1{4a}$. That is, $$ y=ax^2-\frac1{4a}\tag{5} $$