I played around with Maple and came up with a counterexample. I'm not going to prove it's a counterexample as the mathematics is tedious.
Take $$A = \begin{pmatrix} 1 & 3 & 2 \\\ -1 & 1 & 4 \\\ 1 & 2 & 7 \end{pmatrix}^{-1}\begin{pmatrix} 1 & 0 & 0 \\\ 0 & -1 & 0 \\\ 0 & 0 & 3 \end{pmatrix}\begin{pmatrix} 1 & 3 & 2 \\\ -1 & 1 & 4 \\\ 1 & 2 & 7 \end{pmatrix},$$ and $$D = \begin{pmatrix} 1 & 0 & 0 \\\ 0 & 3 & 0 \\\ 0 & 0 & 1\end{pmatrix}.$$ Then $DAD$ and $A + D$ has non-real eigenvalues.