Any choice of $(x_1,x_2,x_3,x_4)$ that satify the constraints \begin{eqnarray*} 1 \le x_1 \le 12 \\\ 0 \le x_2\le 10 \\\ 3 \le x_3\le 13 \\\ 5 \le x_4\le 36 \end{eqnarray*} will satify the constraint $x_1+x_2+x_3+x_4 \le 72$ so there are $12$ choices for $x_1$,$11$ choices for $x_2$,$11$ choices for $x_3$,$32$ choices for $x_4$, so there are $12 \times 11 \times 11 \times 32 = \color{red}{46464}$ solutions.