Artificial intelligent assistant

Does $\sum_{n=1}^\infty \int_0^1 \frac{dt}{(n + t^2 x^2)^{3/2}}$ converge? For what values of $x$ does $$\sum_{n=1}^\infty \int_0^1 \frac{dt}{(n + t^2 x^2)^{3/2}}$$ converge? Is the convergence absolute, conditional, or uniform? I'm not sure how to begin solving this problem. Evaluating the integral doesn't seem tractable. Interchanging summation and integration doesn't seem like it gives anything. So I'm stuck.

$$(n+t^{2}x^{2})^{\frac{3}{2}}\ge n^{\frac{3}{2}}$$

$$\implies\frac{1}{(n+t^{2}x^{2})^{\frac{3}{2}}}\le\frac{1}{n^{\frac{3}{2}}}$$

$$\implies\int_{0}^{1}\frac{1}{(n+t^{2}x^{2})^{\frac{3}{2}}}dt\le\frac{1}{n^{\frac{3}{2}}}$$

$$\implies\sum_{n=1}^{\infty}\int_{0}^{1}\frac{1}{(n+t^{2}x^{2})^{\frac{3}{2}}}dt\le\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}}}$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy df55edc4b9d9267bed9a2195cf55bbee