> Is there any better way to argue this?
I would argue it directly.
**Claim:** $A\subseteq B\to C\setminus B\subseteq C\setminus A$ for all sets $C$.
_Proof_. Suppose $A\subseteq B$. Further suppose $x\in C\setminus B$, where $x$ is arbitrary. If $C=\varnothing$, then $x\in C\setminus A$ is trivially true (i.e., $C\setminus B\subseteq C\setminus A$ is vacuously true when $C=\varnothing$). Suppose, then, that $C\
eq\varnothing$ and $x\in C\setminus B$. By definition, $x\in C\setminus B$ means $x\in C\land x\
ot\in B$. Since we are given $A\subseteq B$, we observe that $x\in A\to x\in B$ is logically equivalent to $x\
ot\in B\to x\
ot\in A$ (contrapositive). Thus $x\in C\land x\
ot\in B$ implies that $x\in C\land x\
ot\in A$, and the definition of $C\setminus A$ is $x\in C\land x\
ot\in A$. Thus, $x\in C\setminus A$. Hence, if $A\subseteq B$, then $C\setminus B\subseteq C\setminus A$. $\blacksquare$