For the matrices $I$ and $S$ the following is a symplectic basis
$$ e_1 = \begin{pmatrix} 1 \\\ -1 \\\ 1 \\\ 0 \end{pmatrix}$$
$$ f_1 = \begin{pmatrix} 0 \\\ 1 \\\ 1 \\\ 0 \end{pmatrix}$$
$$e_2 = \begin{pmatrix} -1 \\\ 0 \\\ 0 \\\ 1 \end{pmatrix}$$ $$f_2 = \begin{pmatrix} -1 \\\ 0 \\\ 1 \\\ 0 \end{pmatrix}$$
yielding
$$ \mathrm{Arf}(K) = e_1^T S e_1 f_1^T S f_1 + e_2^T S e_2 f_2^T S f_2 = 9 \equiv_2 1$$ as it should.