To show $e^{(A+B)t} = e^{At}e^{Bt}$ for all $t$ $\implies [A,B] = 0$ compare the coefficient of $t^2$ in the power-series expansion of both sides of the equation. We have $$e^{(A+B)t} = 1+ (A+B)t + \color{red}{\frac{(A+B)^2}{2!} t^2} + \ldots$$
and
$$e^{At}e^{Bt} = \left(1+At + \frac{A^2}{2!}t^2+\ldots\right)\left(1+Bt + \frac{B^2}{2!}t^2+\ldots\right) \\\= 1 + (A+B)t + \color{red}{\frac{A^2 + 2AB + B^2}{2!}t^2} + \ldots$$
Comparing the two expressions above gives us $$(A+B)^2 = A^2 + 2AB + B^2 \implies AB = BA$$
* * *
Comparing the general $t^n$-term in the power-series expansion gives us the equation $(A+B)^n = \sum_{k=0}^n{n\choose k}A^kB^{n-k}$ which is just the binomial theorem which holds for matrices given that $[A,B] = 0$. This gives a proof of the other direction: $[A,B] = 0 \implies e^{(A+B)t} = e^{At}e^{Bt}$.