> Herein, we present a standard approach that relies on the definition of the limit. To that end we proceed.
* * *
If $\lim_{n\to \infty}\frac{a_{n+1}}{a_n}=k>1$, then for all $\epsilon>0$, there exists a number $N(\epsilon)$ such that whenever $n>N(\epsilon)$,
$$k-\epsilon<\frac{a_{n+1}}{a_n}
Take $\epsilon=\frac{k-1}{2}$. Then, for $n>N\left(\frac{k-1}{2}\right)$, we see that
$$a_{n+1}>\left(\frac12+\frac k2\right)a_n$$
where $\left(\frac12+\frac k2\right)>1$.
Proceeding recursively, we find that
$$a_{n+m}>\left(\frac12+\frac k2\right)^ma_n$$
Letting $m\to \infty$, we obtain the coveted limit
$$\lim_{n\to \infty}a_n=\infty$$
And we are done!