No. Take$$\begin{array}{rccc}f\colon&D(0,1)&\longrightarrow&\mathbb C\\\&z&\mapsto&\frac1{1-z}\end{array}$$and $a_n=-1+\frac1n$ for each $n\in\mathbb N$.
No. Take$$\begin{array}{rccc}f\colon&D(0,1)&\longrightarrow&\mathbb C\\\&z&\mapsto&\frac1{1-z}\end{array}$$and $a_n=-1+\frac1n$ for each $n\in\mathbb N$.