We give an example in which $\operatorname{cond}(M)>\operatorname{cond}(Q)$ and an example in which $\operatorname{cond}(M)<\operatorname{cond}(Q)$, showing there is no trivial relation between $\operatorname{cond}(M)$ and $\operatorname{cond}(Q)$.
For $a\in(0,1]$, we define matrices $Q$ and $A$ with $$Q = \begin{bmatrix}2a&0\\\0&2\end{bmatrix}\,,\quad A=\begin{bmatrix}1&0\\\0&1\end{bmatrix}\,.$$ For these $Q$ and $A$, matrix $M$ has characteristic polynomial $$p_M(\lambda)=(\lambda^2-2a\lambda-1)(\lambda^2-2\lambda-1)\,.$$ It follows that eigenvalues of $M$ are $1\pm\sqrt{2}$ and $a\pm\sqrt{1+a^2}$. Since $0
Now, for $a=1$ we get $\operatorname{cond}(Q)=1<\operatorname{cond}(M)$, and for $a=0.1$ we get $\operatorname{cond}(Q)=10>\operatorname{cond}(M)$.