For every $n\geqslant0$ and every fixed $s$, $\mathrm E(s^K\mid Z=n)=s\mathrm E(s^{K_1})\cdots \mathrm E(s^{K_n})=sR(s)^n$.
Hence, $\mathrm E(s^K)=\mathrm E(\mathrm E(s^K\mid Z))=\mathrm E(sR(s)^Z)=s\mathrm E(R(s)^Z)$. That is, $R(s)=sG(R(s))$.
For every $n\geqslant0$ and every fixed $s$, $\mathrm E(s^K\mid Z=n)=s\mathrm E(s^{K_1})\cdots \mathrm E(s^{K_n})=sR(s)^n$.
Hence, $\mathrm E(s^K)=\mathrm E(\mathrm E(s^K\mid Z))=\mathrm E(sR(s)^Z)=s\mathrm E(R(s)^Z)$. That is, $R(s)=sG(R(s))$.