Attempt:
Let $x >0$;
You got $f'(0)>0$.
$\dfrac{f(x)-f(0)}{x}=\dfrac{f(x)}{x}$;
$\lim_{x \rightarrow 0^+} f(x)/x= f'(0)>0$.
For $x_0$ small enough $f(x_0)/x_0 >0$, i.e. $f(x_0)>0$.
Assume there is an $x_1 >x_0$ s.t. $f(x_0)>f(x_1)$.
The continuos function $f$ attains its maximum on $[x_0,x_1]$.
$f'(x_0) \le 0$, if maximum occurs at $x_0$, or $f'(t)=0$ if maximum occurs at $x_0
Then $f(x_0) >0$ and $f'(x_0) \le 0$, or $f(t)>0$ and $f'(t)=0$, a contradiction.
Hence solution $A$.