> Key-tool: $\cosh(2x)=1+2\sinh^2(x)$
This is a nice example where computing the derivative only obscures things...
Let $u=\cosh\theta$, then, for every $t$, $$f(4t)=\cosh(2ut)\cosh(2t)-\cosh(2ut)-\cosh(2t)=4\sinh^2(ut)\sinh^2(t)-1$$ hence $f(4t)$ has the sign of $g(t)-1$ where $$g(t)=2\sinh(ut)\sinh(t)$$ The function $g$ increases from $g(0)=0$ to $g(+\infty)=+\infty$ hence, for every $u$, there exists a unique $t^*$ such that $$g(t^*)=1$$ Thus, $f(0)=f(\frac14t^*)=0$, $f(t)<0$ for every $t$ in $(0,\frac14t^*)$, and $f(t)>0$ for every $t$ in $(\frac14t^*,+\infty)$, where $t^*>0$ is the unique solution of the identity
> $$2\sinh(\cosh(\theta)t^*)\sinh(t^*)=1$$