Let random variable $X_i$ be equal to $1$ if the number $i$ is not rolled in the $n$ tosses, and let $X_i=0$ otherwise. Let $Y=X_1+X_2+\cdots+X_d$. Then $Y$ is the number of numbers not rolled.
We have by the linearity of expectation that $$E(Y)=E(X_1)+\cdots+E(X_d).$$
Note that $E(X_i)=\Pr(X_i=1)=\left(\frac{d-1}{d}\right)^n$. Multiply by $d$ to find $E(Y)$.