Let $\tilde{G}$ be a random graph chosen uniformly at random among all graphs on $n$ vertices (i.e. $\tilde{G}=G(n,p=1/2)$). Let $P_k$ be the probability that $\tilde{G}$ has exactly $k$ isomorphisms. Note that $P_1+\ldots +P_{n!/2}+P_{n!}=1$ and $2^{{n \choose 2}}P_{\ell}/\ell$ is the number of isomorphism classes with size $\ell$. So \begin{align*} g_n = \sum_\ell \frac{2^{{n \choose 2}}P_\ell}{\ell} \geq 2^{{n \choose 2}}\frac{(1-P_{n!})}{n!/2}+\frac{2^{{n \choose 2}}P_{n!}}{n!}=\frac{2^{{n \choose 2}}}{n!} \left(2-P_{n!}\right). \end{align*}
If $P_{n!} \
eq 1+o(1)$, then this lower bound on $g_n$ would be larger than $(1+o(1))\frac{2^{{n \choose 2}}}{n!}$ (infinitely often), contradicting Polya's result.
EDIT: I should be a little clearer. $P_k$ is the probability that $\tilde{G}$ has isomorphisms to exactly $k$ graphs on $n$ vertices.