Since $M$ is invertible, $MM^{-1}=I$. Transposing both sides produces $(MM^{-1})^t=(M^{-1})^tM^t=I^t=I$, so $M^t$ is invertible with inverse $(M^{-1})^t$. That is, $(M^t)^{-1}=(M^{-1})^t$.
Since $M$ is invertible, $MM^{-1}=I$. Transposing both sides produces $(MM^{-1})^t=(M^{-1})^tM^t=I^t=I$, so $M^t$ is invertible with inverse $(M^{-1})^t$. That is, $(M^t)^{-1}=(M^{-1})^t$.