Let $$w=u+iv=\frac{z+1}{z-1}\implies z=\frac{w+1}{w-1}$$
Hence $$z=\frac{1+u+iv}{u-1+iv}\cdot\frac{u-1-iv}{u-1-iv}$$
The real part is $$\frac{u^2+v^2-1}{(u-1)^2+v^2}=2$$
And this simplifies to $$(u-2)^2+v^2=1$$
Let $$w=u+iv=\frac{z+1}{z-1}\implies z=\frac{w+1}{w-1}$$
Hence $$z=\frac{1+u+iv}{u-1+iv}\cdot\frac{u-1-iv}{u-1-iv}$$
The real part is $$\frac{u^2+v^2-1}{(u-1)^2+v^2}=2$$
And this simplifies to $$(u-2)^2+v^2=1$$