when does $\sqrt{I_x} \leq 2 \sqrt{150-I_x}$?
By squaring both sides, $I_x \leq 4 (150-I_x)$
$$5I_x \leq 600$$
$$I_x \leq 120$$
$$\min\left(50 \sqrt{I_x}, 100 \sqrt{150-I_X} \right)= \begin{cases} 50 \sqrt{I_X} & I_X \leq 120 \\\ 100 \sqrt{50-I_X}\ & I_X > 120 \end{cases}$$
We can see that the function increases from $0$ to $120$ and then decreases from $120$ onwards.
Hence the maximum point is at $I_X=120$.