Let $R = \min \\{r_i : 1 \le i \le n\\}$.
If each $x_i \ge 0$ and $\sum_{i=1}^n x_i^2 = 1$ then each $x_i$ satisfies $0 \le x_i \le 1$. In particular, $x_i^2 \le x_i$ for each index $i$. For any $n$-tuple of such $x_i$'s you get $$r_1x_1 + \cdots + r_nx_n \ge R (x_1 + \cdots + x_n) \ge R (x_1^2 + \cdots + x_n^2) = R.$$
Now take the infimum.