The possibilities are , 1) 5 sixes and a zero. 2) 4 sixes and a four and a two. 3) 3 sixes and 3 fours. 4) 4sixes and a 2 three.
So possible ways are, $$\frac{6!}{5!} + \frac{6!}{4!} + \frac{6!}{3!×3!} +\frac{6!}{4!×2!}$$ $$=71$$
The possibilities are , 1) 5 sixes and a zero. 2) 4 sixes and a four and a two. 3) 3 sixes and 3 fours. 4) 4sixes and a 2 three.
So possible ways are, $$\frac{6!}{5!} + \frac{6!}{4!} + \frac{6!}{3!×3!} +\frac{6!}{4!×2!}$$ $$=71$$