Notice that $$ A=D\bar A = D\overline{D\bar A} = \underbrace{D\bar D}_{=:S} A$$ where $S$ is real, diagonal, positive semidefinite. Let $d_1, \dotsc, d_n$ be the diagonal elements of $D$. Then, for the $k$-th row of $A$ we have $$ a_k = |d_k|^2 a_k. $$
1. If $|d_k| \
e 1$, then it follows $a_k = 0$.
2. If $|d_k| = 1$, then the argument (the angle in polar coordinate) of non-zero $a_{k,l}$ is half the argument of $d_k$ as $$ \arg( a_{k,l} ) = \arg( d_k \bar a_{k,l} ) = \arg(d_k) + \arg(\bar a_{k,l}) = \arg(d_k) - \arg(a_{k,l}). $$ In particular:
* If $d_k = 1$, then $a_k = \bar a_k$ is real.
* If $d_k = -1$, then $a_k = -\bar a_k$ is imaginary.
* If $d_k = \pm i$ (the imaginary unit), the the real part of $a_k$ equals the $\pm$ imaginary part of $a_k$.