Take the mirror image of the matrix, so you get a factor $(-1)^{n-1}$. Now the mirror image is $$ I +\pmatrix{ &&&1\\\ &&&\vdots\\\ &&&1\\\ 1&\cdots&1&0&1&\cdots&1\\\ &&&1\\\ &&&\vdots\\\ &&&1}=I+B\quad \text{(say)}. $$ Clearly, the matrix $B$ has rank $2$ and $(1,\ldots,1,\pm\sqrt{2n-2},1,\ldots,1)^T$ is an eigenvector for the eigenvalue $\pm\sqrt{2n-2}$. Hence $\det A=(-1)^{n-1}(1+\sqrt{2n-2})(1-\sqrt{2n-2})=(-1)^n(2n-3)$.
**Edit.** Alternatively, subtract the middle row by the sum of all other rows. Then subtract the middle column by the sum of all other columns. What remains is a matrix with $(1,\ldots,1,-(2n-3),1,\ldots,1)$ on its anti-diagonal and zeroes elsewhere. Therefore $\det(A)=-(2n-3)\times(-1)^{n-1}=(-1)^n(2n-3)$.