Define modulation and dilation operators: $M_{\gamma}f(t) = e^{-\gamma t} f(t)$ and $D_{\lambda}f(t) = f(\lambda t)$. Then $t \mapsto e^{\gamma t} f(t/\lambda)$ can be expressed as either $M_{-\gamma} (D_{1/\lambda} f)$ (dilation then modulation) or $D_{1/\lambda}(M_{-\gamma \lambda} f)$ (modulation then dilation). Using either form, we obtain the same result. $$\mathcal LM_{-\gamma} (D_{1/\lambda} f) = \mathcal LD_{1/\lambda} f = \lambda \mathcal L[f] (\lambda(z - \gamma))$$ $$\mathcal LD_{1/\lambda}(M_{-\gamma \lambda} f) = \lambda \mathcal LM_{-\gamma \lambda} f = \lambda \mathcal L[f] (\lambda (z - \gamma))$$