Well, the equation for $t$ is $\large{\frac{1}{11}=2^{-\frac{t}{4.88 \cdot 10^{10}}}}$ or $\large{11=2^{\frac{t}{4.88 \cdot 10^{10}}}}$. Thus, $t=\frac{\ln 11}{\ln 2} \cdot 4.88 \cdot 10^{10} \approx 1.6882 \cdot 10^{11}$
Well, the equation for $t$ is $\large{\frac{1}{11}=2^{-\frac{t}{4.88 \cdot 10^{10}}}}$ or $\large{11=2^{\frac{t}{4.88 \cdot 10^{10}}}}$. Thus, $t=\frac{\ln 11}{\ln 2} \cdot 4.88 \cdot 10^{10} \approx 1.6882 \cdot 10^{11}$