The root test says the sum converges if
$$\limsup_{n\to\infty}|\arctan(\cos n)|<1$$
Since we know that
$$\sup_{n\ge0}|\arctan(\cos n)|=\arctan(\cos(0))=\arctan(1)=\frac\pi4$$
It follows that
$$\limsup_{n\to\infty}|\arctan(\cos n)|\le\frac\pi4<1$$
So the given series converges.