Artificial intelligent assistant

Relation between the weighted matrix norm and the weights For a nonsingular matrix $W \in \mathbb{C}^{m\times{}m}$, the weighted vector norm is defined as $||\overrightarrow{x}||_W = ||W\overrightarrow{x}||$. Let $||A||$ denote the induced matrix norm by the original vector norm $||\overrightarrow{x}||$, and $||A||_W$ denote the induced matrix norm by the weighted vector norm $||\overrightarrow{x}||_W$. Prove that if $A \in \mathbb{C}^{m\times{}m}$ then $||A||_W = ||WAW^{-1}||$.

By definition $$ \|A\|_W=\sup_{x\
e 0}\frac{\|WAx\|}{\|Wx\|}=\sup_{x\
e 0}\frac{\|WAW^{-1}(Wx)\|}{\|Wx\|}. $$ But as $W$ is non-singular $$ \big\\{Wx:x\in\mathbb R^n\smallsetminus\\{0\\}\big\\}=\big\\{y:y\in\mathbb R^n\smallsetminus\\{0\\}\big\\}, $$ and hence $$ \sup_{x\
e 0}\frac{\|WAW^{-1}(Wx)\|}{\|Wx\|}=\sup_{y\
e 0}\frac{\|WAW^{-1}y\|}{\|y\|}=\|WAW^{-1}\|. $$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy d2e645366875d0e5e5c7acde1562170b