By definition $$ \|A\|_W=\sup_{x\
e 0}\frac{\|WAx\|}{\|Wx\|}=\sup_{x\
e 0}\frac{\|WAW^{-1}(Wx)\|}{\|Wx\|}. $$ But as $W$ is non-singular $$ \big\\{Wx:x\in\mathbb R^n\smallsetminus\\{0\\}\big\\}=\big\\{y:y\in\mathbb R^n\smallsetminus\\{0\\}\big\\}, $$ and hence $$ \sup_{x\
e 0}\frac{\|WAW^{-1}(Wx)\|}{\|Wx\|}=\sup_{y\
e 0}\frac{\|WAW^{-1}y\|}{\|y\|}=\|WAW^{-1}\|. $$