It's a little simpler than you are making it....
$$ \begin{align} ((\sqrt[x] {\sqrt{x}}-1)+1)^x &= \sum_{\ell=0}^x \binom x\ell(\sqrt[x] {\sqrt{x}}-1)^{\ell} \\\ &\ge \binom x0(\sqrt[x] {\sqrt{x}}-1)^0 + \binom x1(\sqrt[x] {\sqrt{x}}-1)^1 \\\ &=1+ x(\sqrt[x] {\sqrt{x}}-1) \end{align} $$