First, split into two cases: $x<0$ and $x>0$. We get
$$f(x)=\begin{cases} \frac{|2-x|+x}{x} & x> 0 \\\ \\\ \frac{|2-x|+x}{-x} & x<0\. \end{cases}$$
For $x<0$, note $2-x$ is always positive. Otherwise, for $x\in(0,\infty)$, $2-x$ is nonnegative for $x\le 2$ and negative for $x>2$. So we can split our first case into $x>2$ and $0< x\le 2$. We obtain
$$f(x)=\begin{cases} \frac{(x-2)+x}{x} & x>2 \\\ \\\ \\\ \frac{(2-x)+x}{x} & 0< x\le 2 \\\ \\\ \\\ \frac{(2-x)+x}{-x} & x<0\. \end{cases}$$