> **Rank-Nullity theorem** :
>
> If there is a matrix $A$ with $m$ rows and $n$ columns over a field, then $$Rank ( A) + Nullity (A) = n $$
>
> * * *
${}$
* * *
> Also $Rank(A)\leq min\\{m,n\\}$
Let $n \lt m$, then $Rank(A) \leq n$
**Case I:** If in a matrix $A$, $Rank (A)=n$, then $Nullity (A)=0$
**Case II:** If in a matrix $A$, $0 \leq Rank (A) \lt n$, then $Nullity (A)\leq n$
Let $n \gt m$, then $Rank(A) \leq m$
**Case I:** If in a matrix $A$, $Rank (A)=m$, then $Nullity (A)=n-m$
**Case II:** If in a matrix $A$, $0 \leq Rank (A) \lt m$, then $Nullity (A)\leq n-m$
* * *
* * *
Although your given example satisfy both the option $a$ and $b$, but from one particular example you can't conclude that those statements are true for all.