Artificial intelligent assistant

Upper bound of $\frac{\|AQx\|_2}{\|Ax\|_2}$ with $Ax\neq 0,\forall x$? I am studying matrix norm right now, based on the definition of norm on matrix, we know that $\|A\|_2 = \sup_{x} \frac{\|AQx\|_2}{\|Qx\|_2}$ for some given matrix $Q$. Hence the upper bound for $\frac{\|AQx\|_2}{\|Qx\|_2}$ is $\|A\|_2$. Right now I got stuck in finding the upper bound for $\frac{\|AQx\|_2}{\|Ax\|_2}$. Thank you Kavi for pointing out one special case in which $Ax=0$. If we are restricted ourself on the matrix such that there does not exist $x$ such that $Ax=0$. For example, we can focus ourself on invertible square matrix.

$$\sup_{Ax \
eq 0}\frac{\|AQx\|_2}{\|Ax\|_2}=\sup_{y\
eq 0} \frac{\|AQA^{-1}y\|_2}{\|y\|_2}=\|AQA^{-1}\|_2$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy d15a44f103808de0ca9cceb2eeae4bb5