$$ \lim_{p \rightarrow \infty} \left( x^p + y^p \right) ^ { 1 \over p } = \max \left( x, y \right) $$ $$ \lim_{p \rightarrow -\infty} \left( x^p + y^p \right) ^ { 1 \over p } = \min \left( x, y \right) $$ $$ \left( x^2 + y^2 \right) ^ {1 \over 2} = \text{eucledian}(x, y) $$