You have 64 possibilities. If we start in the bottom corner and move left we traverse the possibilities of 1 to 8 checkers. For the next row we go 2, 4, ..., 16 or twice the first row. The third row is three times the first. And so on. Thus, the expected value,
$$\frac{1}{64}\left( (1+2+3+\cdots+8) + 2(1+2+3+\cdots+8) +3(1+2+3+\cdots+8) + \cdots +8(1+2+3+\cdots+8) \right)$$
The sum $1+2+3+\cdots+8=\frac{8\cdot 9}{2} = 36$. Thus, the expected value is,
$$\frac{1}{64}\left( 36 + 2\cdot 36+ 3\cdot 36+ \cdots +8\cdot 36 \right) = \frac{36(1+2+3+\cdots +8)}{64} = \frac{36^2}{64} = \frac{81}{4}$$