You are almost done!
$$\lim_{r\to 0}\frac{e^{-\frac{1}{r^2}}}{r^4(\cos^4\theta+\sin^4\theta)}=\frac 1{\cos^4\theta+\sin^4\theta}\lim_{r\to 0}\frac{e^{-\frac{1}{r^2}}}{r^4}.$$ For the last limit you can use L'Hopital's rule.
You are almost done!
$$\lim_{r\to 0}\frac{e^{-\frac{1}{r^2}}}{r^4(\cos^4\theta+\sin^4\theta)}=\frac 1{\cos^4\theta+\sin^4\theta}\lim_{r\to 0}\frac{e^{-\frac{1}{r^2}}}{r^4}.$$ For the last limit you can use L'Hopital's rule.