Note:
$$\cos^2 x + \sin^2 x = 1$$
Therefore, the numerator becomes:
$$x\sin^2x + x\cos^2x + \sin x + \cos x \sin x + x\cos x$$
$$= x(\cos^2x + \sin^2x) +\sin(x)(\cos x + 1) + x \cos x$$
$$= x(1 + \cos x) + \sin x(\cos x + 1) $$
$$= (\cos x + 1)(x + \sin x)$$
Hence, the final result becomes:
$$y' = \frac{(\cos x + 1)(x + \sin x)}{(\cos x +1)^2} = \frac{x+\sin x}{1 + \cos x}$$