### Did's example
Let $f(x)=e^{-x^2}$.
Then $f'(x)=-2xe^{-x^2}$, so $f''(x)=4x^2e^{-x^2}-2e^{-x^2}=(4x^2-2)e^{-x^2}$.
$e^{-x^2}$ is always positive, but $4x^2-2$ can be positive or negative.
### Did's example
Let $f(x)=e^{-x^2}$.
Then $f'(x)=-2xe^{-x^2}$, so $f''(x)=4x^2e^{-x^2}-2e^{-x^2}=(4x^2-2)e^{-x^2}$.
$e^{-x^2}$ is always positive, but $4x^2-2$ can be positive or negative.