$\sum_iX_i=n\bar X$, so
$$\begin{align*} \sum_i(X_i-\bar X)^2&=\sum_iX_i^2-2\bar X\sum_iX_i+\sum_i\bar X^2\\\ &=\sum_iX_i^2-2\bar X(n\bar X)+n\bar X^2\\\ &=\sum_iX_i^2-n\bar X^2\;. \end{align*}$$
Moreover,
$$\begin{align*} \sum_i(X_i-\bar X)(Y_i-\bar Y)&=\sum_iX_iY_i-\bar X\sum_iY_i-\bar Y\sum_iX_i+\sum_i\bar X\bar Y\\\ &=\sum_iX_iY_i-\bar X(n\bar Y)-\bar Y(n\bar X)+n\bar X\bar Y\\\ &=\sum_iX_iY_i-n\bar X\bar Y\;. \end{align*}$$
Thus,
$$\begin{align*} \frac{\sum_i(X_i-\bar X)(Y_i-\bar Y)}{\sum_i(X_i-\bar X)^2}&=\frac{\sum_iX_iY_i-n\bar X\bar Y}{\sum_iX_i^2-n\bar X^2}\\\\\\\ &=\frac{n\sum_iX_iY_i-n^2\bar X\bar Y}{n\sum_iX_i^2-n^2\bar X^2}\\\\\\\ &=\frac{n\sum_iX_iY_i-\sum_iX_i\sum_iY_i}{n\sum_iX_i^2-\left(\sum_iX_i\right)^2}\;. \end{align*}$$