\begin{align} \int_0^2 2\pi (\sqrt{9-x^2})\cdot\sqrt{1+(-x/\sqrt{9-x^2})^2}dx &=\int_0^2 2\pi (\sqrt{9-x^2})\cdot\sqrt{\dfrac{9-x^2+x^2}{9-x^2}}dx\\\ &=\int_0^2 2\pi\sqrt{9}\,dx\\\ &=6\pi\int_0^2dx\\\ &=6\pi x{\huge\vert}_0^2=12\pi \end{align}
\begin{align} \int_0^2 2\pi (\sqrt{9-x^2})\cdot\sqrt{1+(-x/\sqrt{9-x^2})^2}dx &=\int_0^2 2\pi (\sqrt{9-x^2})\cdot\sqrt{\dfrac{9-x^2+x^2}{9-x^2}}dx\\\ &=\int_0^2 2\pi\sqrt{9}\,dx\\\ &=6\pi\int_0^2dx\\\ &=6\pi x{\huge\vert}_0^2=12\pi \end{align}