Let $x=R_0\tan(\theta)$ so that $dx=R_0 \sec^2(\theta)\,d\theta$. Then, denoting by $\theta_0$, $\theta_0=\arctan\left(\frac{\sqrt{R^2-R_0^2}}{R_0}\right)$, we have
$$\begin{align} IR_0\int_0^{\sqrt{R^2-R^2_0}}\left(R^2_0+x^2\right)^{-3/2}\,dx&=\frac{I}{R_0} \int_{0}^{\theta_0} \cos(\theta)\,d\theta\\\\\\\ &=\frac{I}{R_0}\sin\left(\theta_0\right)\\\\\\\ &=\frac{I}{RR_0}\sqrt{R^2-R_0^2} \end{align}$$