Note that $p(t+1)=u(p(t))$ where $u(x)=\dfrac{W_Ax}{W_Ax+W_a(1-x)}$ hence $$ \frac{u(x)}{1-u(x)}=\frac{W_A}{W_a}\cdot\frac{x}{1-x}, $$ which trivializes the iteration of $u$. To wit, for every integer $t\geqslant0$, $$ \frac{p(t)}{1-p(t)}=\frac{u^{\circ t}(p(0))}{1-u^{\circ t}(p(0))}=\left(\frac{W_A}{W_a}\right)^t\cdot\frac{p(0)}{1-p(0)}, $$ that is, $$ p(t)=\frac{(W_A)^tp(0)}{(W_A)^tp(0)+(W_a)^t(1-p(0))}. $$