$\log\Gamma(s+1)$ is a convex function on $\mathbb{R}^+$ and $$ \frac{n!}{(kn)!} = \frac{\Gamma(n+1)}{\Gamma(kn+1)}\leq \frac{1}{n^{(k-1)n}}.$$ Something similar but more accurate can be deduced from Stirling's inequality $$ \left(\frac{m}{e}\right)^m\sqrt{2\pi m}\, e^{\frac{1}{12m+1}}\leq\Gamma(m+1) \leq \left(\frac{m}{e}\right)^m\sqrt{2\pi m}\, e^{\frac{1}{12m}}.$$